
A Story of Software QA Automation
From My Perspective

(John Rains, 2022)

Most of the people who will read this have never heard of Silicon Controlled Rectifiers1 and TTL
integrated circuits2, but here I was amid these new revelations in technology. I was working my
way through college as a lab technician in semiconductor development when a prior colleague
called to recruit me into a company doing advanced machine tool automation3. Upon
graduation in 1971, I relocated from southeast England to Rochester, Minnesota4 as on-site
senior electronics engineer for the project’s new home. My degree in Electrical and Electronics
Engineering and my love of Mathematics and Physics gave me a solid foundation in
generalization, and the ability to transition to various industries and subsequent diverse
careers. These in one way or another, involved computers and some type of automation. In
2013, I took a contract with a FinTech company to provide their Software Quality Assurance.
This company’s product is systems for managing online lending where minutes of downtime
equate to $millions in lost revenue. I was very familiar with quality principles, having previously
implemented ISO 9000 and Six Sigma but the practices of this company were diametrically
opposite to any extant quality practices; but there I was, the only QA person in a multi-located
company.

First Principles

As companies go, there are good ones, and there are dysfunctional ones. In my experience,
most, to some degree, are the latter. The Association for Talent Development lists definitions
for four stages of dysfunction5 and includes a dysfunctional behaviors checklist; it is well worth
reading. By these measures, the company I had joined was probably at what ATD describes as
hovering between Stages I and II, and I was facing the challenge of implementing change in this
environment.

I found myself facing many issues, most notably:

• Poor communications
• Inexperienced middle management
• Lack of in-depth product knowledge6
• A missing sense of team
• Siloed departments with goals not aligned across departments

1 https://en.wikipedia.org/wiki/Silicon_controlled_rectifier
2 https://en.wikipedia.org/wiki/Transistor%E2%80%93transistor_logic
3 https://www.practicalmachinist.com/forum/threads/moilins-system24-and-associated-developments.292822/
4 https://en.wikipedia.org/wiki/IBM_Rochester
5 https://www.td.org/insights/overcoming-workplace-dysfunction-and-restoring-functionality
6 The source code for the core product had been purchased from another company and subsequently adapted into
this niche market, along with a plethora of never-to-be-used legacy code.

https://en.wikipedia.org/wiki/Silicon_controlled_rectifier
https://en.wikipedia.org/wiki/Transistor%E2%80%93transistor_logic
https://www.practicalmachinist.com/forum/threads/moilins-system24-and-associated-developments.292822/
https://en.wikipedia.org/wiki/IBM_Rochester
https://www.td.org/insights/overcoming-workplace-dysfunction-and-restoring-functionality

• Fear of accountability and a reluctance to put things in writing
• Upper management driving software releases
• An apparent belief that QA is unnecessary (developers should get it right – right?).

To succeed, I had to do what seemed at the time, impossible – effect change in a change
resistant environment. By nature, the concepts of QA should penetrate all areas of an
organization, but when considered unnecessary, QA cannot garner respect and will never be
given the authority to effect policy. I could taste failure before I’d even begun.

I often turn to my bookshelf to pull out William Bridges' Managing Transitions; in fact, I have
lost count of the number of copies I have given away over the years. Every manager should own
this book which was first published in 1992 and is now in its 25th-anniversary special edition
(2007). I credit Bridges with creating the 4P process7 for transition management, although if
you Google 4P, you’ll drown in a plethora of Marketing related results. Many people are
familiar with the 4WH axiom8 but the most significant difference between 4P and 4WH is part
to play - acknowledging the people who are impacted by the change.

As an aside, I read the book Who Moved My Cheese when it was first released. I hope I am not
the only one who hates this book. My disdain is primarily due to the proposition that change
happens so deal with it, which is the complete antithesis of the fourth P. One takeaway is that
Change happens, but Transition is a managed process, not an accident.

Any plan is better than no plan at all, and I thought I should start by listing QA’s responsibilities:

• Audits product requirements
• Forms the best plan to test the product features
• Eyeballs the product through a web browser by clicking through it
• Facilitates entering defects/bugs and the bug triage process
• Guides and manages user acceptance testing
• Is responsible for reporting metrics including

o number of bugs found / fixed / outstanding
o bugs per thousand lines of code
o bugs per estimate points9
o automated test coverage

This was by-the-book BS and probably the wrong starting point: Even I didn’t believe in it. It did,
however, help me to consider a better first step, and identify what was wrong. To make sense, I
need to give some idea of the system environments and tools used in developing the product.

7 Purpose, Picture, Plan, Part to Play
8 What, Why, When, Who, How
9 https://www.atlassian.com/agile/project-management/estimation

https://www.atlassian.com/agile/project-management/estimation

The Environment

The company is a Microsoft software house. When I came on board, the servers were cloud-
based on AWS but were later relocated to a commercial data center with Hyper-V servers. User
interfaces are browser based, developed in classic ASP and ASP.Net, and customer-facing
websites are responsive and required to function correctly on IE, Chrome, Safari, and Firefox,
both desktop and mobile.

The core management system (CMS) provides the interface for customer service
representatives (CSR) who are distributed across several locations with the CSR workstations
running Windows 95, and IE6, soon updated to XP and IE810.

Software Developers are also distributed across several time zones, and developer team
collaboration was facilitated through Google Hangouts11.

There were four functional environments: Prod, Stage, Dev, and QA. Prod and Stage shared the
production databases, while Dev and QA shared their own, common databases. Databases
employed were both SQL Server and MySQL.

Development methodology is claimed to be Agile but is so Waterfall one gets wet just looking
at it. Issues and new features are tracked in JIRA. Source control uses Git12 and code
deployments were manual (later TeamCity). CI/CD was a far-off in the future concept at that
time.

Almost every aspect of the product involves PII13.

Problems and Solutions

Back to what was wrong with the process. These were the top ones I identified.

• A persistent cycle of software release/fail/rollback
• Lack of good quality data for Dev and QA.
• PII leaks

The persistent cycle of release/fail/rollback sat squarely on the shoulders of the IT manager
who often succumbed to pressures to get new features out the door. So, by default, regression
testing was being done in Production.

10 The restriction to IE was the extensive legacy use of VB Script in the CSR facing web pages. One of the heroes I
refer to later took on the task of rewriting to Java Script, and the restriction was eliminated, allowing the CSR
workstations update to Windows 10, using any browser.
11 Superseded by Microsoft Teams.
12 Later Bitbucket to leverage Atlassian consistency.
13 Personal Identifiable Information (PII): Any representation of information that permits the identity of an
individual to whom the information applies to be reasonably inferred by either direct or indirect means.

I make a differentiation between primitive data (the data entered by the customer) and
extended data (the data generated by the system when consuming the primitive data).
Software development involves a great deal of trial and error, and in a data-driven environment
it is normal for this process to corrupt the data being used. These corruptions need to be
cleaned up, but the extensive use of database triggers made this very difficult. So, periodically,
the Dev environment needed to be refreshed with cleaner data – from Prod.

In Dev, a new feature might demand extended data that simply didn’t yet exist, so some type of
synthesis was required. This cannot, in my opinion, be the case in QA where extended data
should always be system generated.

The QA environment MUST be equivalent to the Production environment. If the Production
environment contains known defects (a reality), then the QA environment MUST include similar
defects and tests should be included to ensure these defects are handled correctly.

When a Dev needed to test changes, they would search the Dev/QA environment for an
account in the required state and, not finding one, would search Prod, and upon finding some,
and with the assistance of DBAs, the Prod data would be copied to Dev. This was often an
imprecise process, mainly due again to database triggers, and it caused the PII leak issue.

The issue of PII leaks was the first issue I addressed as it represented a quick win. I can never
fully agree with the practice of data manipulation for QA testing, but the bleeding needed to
stop. Real customers could receive auto-generated emails from the Dev environment because
data copied from Prod to Dev was not sanitized, and lawsuits ensued. The official solution was
to turn off auto-emails, but these are a critical part of the system which now could not be
tested. When testing the auto-email was absolutely necessary, it would be turned on but often
would not be turned back off – more lawsuits.

The two-step solution was simple. I created a domain on my personal web host (I know, I know
– it should have been done within the corporate systems, but this is a dysfunctional
environment and getting anyone to take ownership was difficult). Next, I communicated with
DBA management (because it was fundamentally DBAs that were exposing PII) that they
needed to implement a policy to sanitize the associated email domain. Although not perfect, it
stemmed the issue until a better method could be implemented14, and it could be measured. I
created a database job to periodically examine the Dev/QA database email domains and report
all non-conformities. Ironically, the DBA manager was the major culprit.

It’s amazing how the Heisenberg uncertainty principle applies; if you try to measure something
it changes. So, commutatively, if you want something to change, measure it. Any win is still a

14 The method had not been changed as of my leaving four years later, but at least, the company now owns and
hosts the domain.

win, and a win that saves the company money gets attention. Because of this solution, QA
gained some credibility.

The matter of QA and Dev sharing databases should have been easy to resolve but it still took a
fight. The existing databases had become so corrupted they were virtually unusable for either
function. A perfect solution would be to create new data from scratch in new databases, but
nobody had the knowledge or budget to do this. Instead, I negotiated for a distinct server
environment for QA and started with a clone of Production that I sanitized as best I could. I felt
it critical that the QA environment was owned by QA, and no one should mess with it’s data.

Automated Continuous Regression Testing

I believe that Developers Unit test, and QA Regression tests. For regression testing, I needed a
supply of new, distinct customers. There are now libraries for Python, PHP, Perl, and Ruby
named Faker, and there is a dot Net cousin, Bogus. These weren’t around at the time, so I
created my own. I extracted massive amounts of data from existing production databases,
disintegrated the data into discreet tables like Fname, Lname, Street, City, etc. then wrote SQL
stored procedures to randomly recombine the disintegrated data into what I called Synthetics15
16. These sprocs produced highly correlated data, i.e., the phone exchange, cell provider, ISP, IP,
state, zip, and much more, were correlated. This correlation, or reference integrity17, is
essential to circumvent the basic functions of Risk assessment processing.

More recently, just for fun, I wrote a Windows Forms app that exercises Bogus; it is publicly
available at https://github.com/JohnRains/Synthetic. While there is a suggestion that Bogus
supports reference integrity, and creates correlated data, at the time of writing, it doesn’t.

I created a desktop tool for broad use, to facilitate the consumption of Synthetics in the QA and
Dev environments. It employs click to copy fields for manual entry into the customer facing web
pages as well as XML data to POST, as third-party lenders require. This latter mechanism was
most useful for populating large quantities of primitive data. Now, I could populate the QA and
Dev environments with primitive data, on-demand. However, it did not address extended data.

QA was starting to gain traction, and the frequency of rollbacks relating to customer-facing
changes had dropped to near zero, but it wasn’t enough and didn’t yet represent a valid shift-
left18 in the process. Getting the QA and Dev environments populated with high-quality
extended data was crucial. Tempus fugit and we acquired a really good IT manager - a
champion of true Agile methodology, unit testing, SOLID19, and CI/CD20. This new manager
offered, and I accepted a full-time position as QA Automation Engineer.

15 A fantastic feature of MS-SQL is “Cross Apply” which I used liberally in the creation of synthetics
16 Synthetics were frequently challenged and examined by Legal, and every time passed muster.
17 A data quality characteristic, not to be confused with referential integrity
18 https://smartbear.com/learn/automated-testing/shifting-left-in-testing
19 https://en.wikipedia.org/wiki/SOLID
20 Continuous Integration/Continuous Delivery and Deployment.

https://github.com/JohnRains/Synthetic
https://smartbear.com/learn/automated-testing/shifting-left-in-testing
https://en.wikipedia.org/wiki/SOLID

Once again, enter 4P with a Purpose of continuously, automatically, exercising the entire
system, with the goals, for QA and Dev, of 1) perpetual regression testing, and 2) creation of
clean extended data. In the Picture, the future state would be environments where high-quality
data could be found in any desired state and defects in Dev would be discovered soon after the
code was deployed. The plan for this involved the Selenium WebDriver framework21. I had been
playing with various keystroke recording/playback tools, but Selenium WebDriver provides an
interface to programmatically interact with a web browser. Once the plan was fully formed in
my mind, I published a document named How Automation: Part One, extracts from which are
given here.

General Concepts:

Context:
In this context, Automation refers to the process of programmatically emulating a customer,
CSR, or process. Automation processes are defined in tests and the framework used to run the
tests is NUnit322. Interaction with browsers uses Selenium WebDriver.

Anatomy:
An Automation test is a set of code compiled into a dynamic link library (DLL) that can be
executed from a Windows command using a command-line runner. The code is decorated with
attributes: attributes separate sections of the code into subsections. An attribute in the code is
not part of the actual executable code but is used to associate metadata with the code.
Attributes declared in a DLL can be read23 by test driver programs such as NUnit3 and this
feature is used by the NUnit3 command line runner to identify the [TestFixture] and [Test] code
sections of the DLL. The test runner interacts with the test program, guided by the schedule
parameters, and the test program interacts with the browser using Selenium.

Test Fixture:
In NUnit, the [Test Fixture] is used to establish the environment within which the tests will run.
It contains its own attributes, [OneTimeSetup], which executes code that sets up the test
environment for the test, and [OneTimeTearDown] which executes code to clean up the
environment once the test had finished. [Test]s are defined within the bounds of the
[TestFixture]. A [TestFixture] can contain multiple [Test]s but I choose to not do so, consistent
with SOLID concepts.

Test:
The [Test] section defines the steps to execute the test.

21 Browsers don’t inherently support Selenium, requiring a proxy, such as Mozilla (Firefox) gecko driver.
22 There are many unit testing frameworks; originally Junit for Java. xUnit.Net is one I would focus on today.
23 This is known as Reflection. Reflection enables external access to attributes within the code of a DLL.

Test Grouping
For this, tests are defined in three groups, and subsequently three DLLs:

GeneralAutomation
This group contains tests and processes that do not involve a browser. A good example
is ACH Returns. Automated Clearing House (ACH) is a network for processing bank
transactions. These transactions are batched for transmission to an ACH processor and
sometimes a transaction within the batch will fail24 and that transaction will be returned
in a returns file along with a return reason code. In the test environment, the ACH batch
file is created but not actually sent to a third party. An ACH returns file can be
synthesized in the General Automation group by executing a sproc that randomly selects
some of the previous day's transactions, attaches a randomly selected return code, flat
or biased25, and builds a Returns file that can then be processed in the CMS tests.

 CustomerAutomation

This group contains tests for the product as presented to the customer in a web
browser. It also contains tests for APIs that the application provides, such as the XML
POST mentioned earlier.

CMSAutomation
This group contains tests for the core management system and the web pages
presented to CSRs and administrative functions. It also contains tests for APIs that the
application provides.

Parameters
Tests are invoked in a Windows command line with parameters that are subsequently extracted
by the test code.

Invoking a test
Once configured, a test can be invoked from the Visual Studio test runner or a command-line
runner. When invoked from Visual Studio, the parameters are provided by defaults declared in
the Parameters class. When invoked from the command line, the Parameters class extracts the
parameters from the command line.

Command Line
Example 1: This is one of the shortest invocations.

C:\NUnit\Nunit3-Console.exe -work:C:\Users\jrains\Automation\TestResults\ -
out:TestResult.xml
--where "name =~ 'simpleTest'" --p environment=qa "C:\QA_Libraries3\GeneralAutomation.dll"

24 e.g. NSF (insufficient funds)
25 Biased would represent the distribution density of return codes in a production environment

Breaking it down

C:\NUnit\Nunit3-Console.exe invokes the NUnit3 command line runner.

-work:C:\Users\jrains\Automation\TestResults\ -out:TestResult.xml establishes the working
directory and output file name for the results of the test (Passed. Failed, Inconclusive, etc.).

--where "name =~ 'simpleTest'" declares the name of the test to be executed.

--p declares the parameters for the test; in this case, environment=qa is the target environment
for the test.

"C:\QA_Libraries3\GeneralAutomation.dll" declares the full path to the DLL that contains the
named test.

Example 2:

C:\Nunit\NUnit3-Console.exe -work:C:\Users\jrains\Automation\TestResults\ -
out:TestResult.xml --where "name =~ ‘moreComplexTest’" --p
merchant=12345;environment=qa;browser=Firefox;browserSizeX=1200;browserSizeY=900;eSig
=yes;pageScreenshots=no "C:\QA_Libraries3\CustomerAutomation.dll"

In this example for the moreComplexTest test, several parameters set the merchant parameter
to 12345, with the test running in the QA environment, using Firefox browser at window
dimension of 1200 x 900, requesting that the webpage is also eSigned and that no screenshots
are taken.

Scheduling Tests
All of this is technically great, but I’m sure the reader can already see the difficulty of
composing such complex command lines. Enter the concept of a test schedule and a schedule
builder.

Regression Scheduler
The first iteration of test schedulers consumed pre-validated command lines from a database
table, but this presented an issue not knowing ahead of time the maximum number of
parameters. Adding tests increases the row dimension but adding parameters requires
increasing the column dimension, which is substantially more difficult to implement.

The second iteration uses sparsely populated XML files, eliminating the database dimension
issue.

Examples of the same two tests above are shown below in XML.

 <Test>
 <jira>JiraTicketNumber</jira>
 <testName>simpleTest</testName>
 <environment>qa</environment>
 <testLib>C:\QA_Libraries3\GeneralAutomation.dll</testLib>
 </Test>

 <Test>
 <jira> JiraTicketNumber </jira>
 <testName> moreComplexTest </testName>
 <merchant>12345</merchant>
 <browser>Firefox</browser>
 <browserSizeX>1200</browserSizeX>
 <browserSizeY>900</browserSizeY>
 <environment>QA</environment>
 <pageScreenshots>No</pageScreenshots>
 <testLib>C:\QA_Libraries3\CustomerAutomation</testLib>
 </Test>

Tests are grouped into a Test Schedule with the following format.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Tests>
 <Test>
 {test 1 declarations}
 </Test>
 <Test>
 {test2 declarations}
 </Test>
 <Test>
 {test3 declarations}
 </Test>
 …
</Tests>

When invoked, the Scheduler executes each test in turn, extracts the results (pass, fail,
inconclusive), and reports the results. A schedule can be built that represents a full regression
test of the system to verify, on-demand, that the system continues to function correctly. It is
worth noting for boundary testing that test parameters intentionally outside of the boundaries
are expected to return fail. In this case, an expected fail that returns a fail is reported as a pass,
and an expected fail that returns a pass is reported as a fail.

There is no practical limit to the number of tests or test parameters that can be included in a
test schedule.

Schedule Builder
A major component in creating this QA Automation is the ability for anyone to create a test
schedule, without involving a software developer. Enter XML documentation comments26.

C# allows the developer to create documentation for their code by writing special comment
fields indicated by triple slashes. At build time, the compiler extracts the XML comments into a
file named for the Visual Studio solution; in these cases, GeneralAutomation.xml,
CustomerWebsiteAutomation.xml, CMSWebsiteAutomation.xml. These comments allow the
test developer to communicate out of the test code using pseudo-language. The reader can
readily see the pseudo-language structure in the example below.

Stakeholders such as the Business Analyst, QA Tester, Marketing, and more, should be involved
in determining the dimensions of the test being developed so that the QA Automation Engineer
can code the XML Comments appropriately.

 [TestFixture]
 public class CreateApplicationTest : SimpleTestBase
 {
 /* Data for the Schedule Builder */
 /// <summary>
 /// <para>The first line of the summary gives a brief description of the test.</para>
 /// <para>The following lines of the summary convey information about the available parameters.</para>
 /// <para>Within the summary, a carriage return can be inserted using </para>
 /// <para>More relevant information</para>
 /// </summary>
 /// <returns>Pass or Fail</returns>
 /// <value>environment select:qa,dev,uat required</value>
 /// <value>merchant select:12345, 67890 required</value>
 /// <value>browser select:Firefox,IE default:FireFox</value>
 /// <value>browserSizeX select:value default:1200</value>
 /// <value>browserSizeY select:value default:800</value>
 /// <value>annualIncome select:value default:</value>
 /// <value>bankrupt select:yes,no default:no</value>
 /// <value>bttcDismiss select:yes,no default:no</value>
 /// <value>bttcHour Select:value default:</value>
 /// <value>bttcMinute Select:00,15,30,45,no default:no</value>
 /// <value>bttcAmPm Select:Am,Pm,no default:no</value>
 /// <value>cellPhone select:value default:</value>
 /// <value>eSig select:yes,no default:yes</value>
 /// <value>Amt select:value default:</value>
 /// <value>nextDate select:value default:</value>
 /// <value>paperCheck select:yes,no default:no</value>
 /// <value>periodicity select:w,b,s,m,rand default:rand</value>
 /// <value>query select:cj,ln,no default:no</value>

26 https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/

 /// <value>scrnshot select:0,1,2,3 default:0</value>
 /// <value>tcpa select:yes,no default:no</value>
 /// <value>xpectedResult select:pass,fail,inconclusive default:pass</value>
 /// <value>automExcl select:yes,no default:no</value>
 /// <example>merchant=yes;environment=qa;browser=ie;query=cj</example>

To allow the Schedule Builder to be aware of the tests available, the test groups are manually
added to the Assemblies.xml file.

 <Assemblies>
 <Assembly>C:\QA_Libraries3\CustomerAutomation.xml</Assembly>
 <Assembly>C:\QA_Libraries3\CMSAutomation.xml</Assembly>
 <Assembly>C:\QA_Libraries3\GeneralAutomation.xml</Assembly>
 </Assemblies>

In the Schedule Builder, when a test group is selected from the Assemblies drop-down, the
tests available within that group are listed in the Tests drop-down. Choosing a test pops up a
modal window where test parameters and declared options can be set according to the
pseudo-language coded for that test. The test can then be added to the test schedule which is
displayed in a DataGridView, and can be saved as a named schedule.

Tests can be re-ordered in the DataGridView and previously created schedules can be loaded
and edited.

You might notice that the Schedule Builder is labelled Prototype. It was built as a proof of
concept with the intent of creating a web based Builder available for anyone to use – a goal I
did not achieve.

QAA Control

QAA Control is the controller used to run the regression test schedules. It introduces the
concept of phases; a start of day phase (SOD), a Churn phase, and an end of day phase (EOD)
mimicking the way the production system flows. Each phase has an associated schedule. The
controller only allows SOD and EOD to run once each day, and there is no throttling of the tests,
whereas Churn repeatedly runs its’ schedule, executing each test within a time window, until
the scheduled EOD start. These phases are defined in a control XML file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<control>
 <sodStart>7:30</sodStart>
 <churnStart>9:00</churnStart>
 <eodStart>16:30</eodStart>
 <endSchedule>17:00</endSchedule>
<!-- testWindow is the number of 5 seconds ticks that define the time window in which a test runs. A

value of 30 is 2.5 minutes -->
 <testWindow>18</testWindow>
<!-- processHide controls whether the cmd window is shown or hidden -->
 <processHide>true</processHide>
</control>

QAA Control is launched each day by the Windows Task Scheduler and self terminates at the
time declared in <endSchedule>.

Each environment, QA, Dev, and UAT has its own instance of QAA Control and the supporting
XML files can be independently tailored. I introduced UAT so that user acceptance testing can
be performed without impacting any of the other environments.

Wrapping Up

QA Automation was satisfactorily running in the QA, DEV, and UAT environments, creating data
and revealing defects to the developers early in the process – a truly shift left benefit. People
would look through the windows of my little mission control center and watch, fascinated by
QA Automation in operation. Software QA, and the level of quality of the company's software
deliveries, had come a long way since those first days. I feel proud of what I achieved and
thoroughly enjoyed doing it. Working with many diverse heroes in the industry was the greatest
retirement gift I could ever have.

Final Thoughts

Henry Ford is attributed with the saying Quality means doing it right when no one is looking.

Throughout this document, I have referred to the quality of the data and the ease of corrupting
the data. Another goal I had set for myself was to achieve what I had earlier said, a new, clean
database set. I knew this would be a huge effort, but I also knew it would be worth doing. I did
not achieve this goal, but I urge others to maintain and respect the data.

I must give a shout-out to the heroes. A well-functioning company has leaders and team players
for its success. A dysfunctional company relies on heroes; take away the heroes and the slightly
dysfunctional company will sink into stages III and IV. Generally, heroes are recognized by their
peers, not themselves. It is worth aspiring to be a hero.

Communication, communication, communication. One can always talk too much but never
communicate too much, and secrets are poison to a well-functioning company. The best
company I ever worked for (as Manager of Corporate Applications Development) had a genuine
open-door policy. It established a practice that managers should set aside one hour each month
to meet 1:1 with their people from second level down, separate from the longer and more
frequent first level down meeting. That hour was the employee’s time to talk about anything
they wanted, work-related or not, and ask any questions even ones that elicit, I don’t know.
And before you think this can only be done in a small company, this company had over 6,500
employees on the corporate campus alone ten times that in toto.

Anyone interested in knowing more about my thoughts on Software QA Automation can
contact me by email: john@starfish.vi.

JSR

mailto:john@starfish.vi

Who am I

• STC Ltd, UK (division of ITT)
Semiconductor Development (college student)

• Molins UK, London, England
Electronics Engineer, System 24

• Woolwich Polytechnic University EE
• Molins UK, Rochester, Minnesota

Lead Systems Engineer

• Molins Richmond, Richmond, Virginia
Manager, Electrical Engineering

• AMF Bowling Automatic Scoring Division, Mechanicsville, Virginia
Director of Engineering

• nView Corporation, Newport News, Virginia
Project Manager

• Circuit City Stores, Richmond Virginia
Manager, Corporate Applications Development

• ComTekX (Computer Technology Experts)
Owner

• Hope House Ministries
Pastor

• Starfish.VI
Owner, software developer, photographer

• Cane Bay Partners VI, LLLP
Software QA Automation Engineer

• Musician
The 4 J’s, The Waterproof Sparrows, The Dusty Blues Band, independent song
writer/performer

• Instruments
Too many guitars to mention; Home recording studio using Alesis Q49/Q25 MIDI
controllers, Focusrite Audio Interface, Logic Pro X

• Photographer and heritage historian for St Croix, VI (https://Heritage.vi)

https://heritage.vi/

